
Opposition-Based Differential Evolution Algorithms

Shahryar Rahnamayan, Hamid R. Tizhoosh, Magdy M.A. Salama, Fellow, IEEE

Abstract— Evolutionary Algorithms (EAs) are well-known
optimization approaches to cope with non-linear, complex prob-
lems. These population-based algorithms, however, suffer from
a general weakness; they are computationally expensive due to
slow nature of the evolutionary process. This paper presents
some novel schemes to accelerate convergence of evolutionary
algorithms. The proposed schemes employ opposition-based
learning for population initialization and also for generation
jumping. In order to investigate the performance of the pro-
posed schemes, Differential Evolution (DE), an efficient and
robust optimization method, has been used. The main idea is
general and applicable to other population-based algorithms
such as Genetic algorithms, Swarm Intelligence, and Ant
Colonies. A set of test functions including unimodal and
multimodal benchmark functions is employed for experimental
verification. The details of proposed schemes and also conducted
experiments are given. The results are highly promising.

I. INTRODUCTION

EVolutionary algorithms (EAs) [1], [2] have been intro-
duced to solve complex optimization problems. Some

well-established and commonly used EAs are Genetic Al-
gorithms (GA) [3] and Differential Evolution (DE) [4], [5].
Each of these method has its own characteristics, strengths,
and weaknesses; but long computational time is a common
drawback for both of them, specially when the solution space
is hard to explore. Many efforts have been already done to
accelerate convergence of these methods.

This paper presents a new scheme for evolutionary algo-
rithms by applying opposition-based learning [6] to make
EAs faster. The main idea behind the opposition-based learn-
ing is considering the estimate and opposite estimate (guess
and opposite guess) at the same time in order to achieve
a better approximation for current candidate solution. The
idea is applicable to a wide range of optimization methods.
Although the proposed schemes are embedded in a classical
DE, but are general enough to be applied to all evolutionary
algorithms.

Organization of this paper is as follows: In section II,
the concept of opposition-based learning is explained. The
proposed schemes are presented in section III. DE, our
evolutionary testbed to implement the proposed schemes, is
briefly reviewed in section IV. Experimental verifications are
given in section V. Concluding remarks and future works
form sections VI and VII, respectively. And finally, Appendix
A describes characteristics of benchmark functions which
have been employed in the conducted experiments.

Pattern Analysis and Machine Intelligence (PAMI) Research Group,
Faculty of Engineering, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario, N2L 3G1, Canada (phone: 1-(519)-888-4567
ext. 6751, fax: 1-(519)-746-4791, emails: shahryar@pami.uwaterloo.ca;
tizhoosh@uwaterloo.ca; msalama@hivolt1.uwaterloo.ca).

II. OPPOSITION-BASED LEARNING

Generally speaking, evolutionary optimization methods
start with some initial solutions (initial population) and try
to improve performance toward some optimal solutions. The
process of searching terminates when predefined criteria
are satisfied. In absence of a priori information about the
solution, we start with a random guess. Obviously, the
computation time is directly related to distance of the guess
from optimal solution. We can improve our chance to start
with a closer (fitter) solution by checking the opposite
solution simultaneously. By doing this, the closer one to
solution (say guess or opposite guess) can be chosen as
initial solution. In fact, according to probability theory, in
50% of cases the guess is farther to solution than opposite
guess; for these cases staring with opposite guess can
accelerate convergence. The same approach can be applied
not only to initial solutions but also to each solution in the
current population. The concept of opposition-based learning
was introduced in [6]. Applications were introduced in [6]–
[8]. Before concentrating on opposition-based learning, we
need to define opposite numbers [6]:

Definition - Let x be a real number in an interval [a, b]
(x ∈ [a, b]); the opposite number x̆ is defined by

x̆ = a + b− x. (1)

Similarly, this definition can be extended to higher
dimensions as follows [6]:

Definition - Let P (x1, x2, ..., xn) be a point in n-
dimensional space, where x1, x2, ..., xn ∈ R and xi ∈ [ai, bi]
∀i ∈ {1, 2, ..., n}. The opposite point of P is defined by
P̆ (x̆1, x̆2, ..., x̆n) where:

x̆i = ai + bi − xi. (2)

Now, by employing opposite point definition, the
opposition-based optimization can be defined as follows:

Opposition-Based Optimization - Let P (x1, x2, ..., xn),
a point in an n-dimensional space with xi ∈ [ai, bi]
∀i ∈ {1, 2, ..., n}, be a candidate solution. Assume
f(x) is a fitness function which is used to measure
candidate optimality. According to opposite point definition,
P̆ (x̆1, x̆2, ..., x̆n) is the opposite of P (x1, x2, ..., xn). Now,
if f(P̆) ≥ f(P), then point P can be replaced with P̆ ;
otherwise we continue with P . Hence, the point and its
opposite point are evaluated simultaneously to continue with
the fitter one.

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2010

In the next section, the opposition-based optimization con-
cept is employed to introduce new schemes of evolutionary
algorithms, and to accelerate convergence rate.

III. PROPOSED SCHEMES

In this section, the concept of opposition-based optimiza-
tion is applied to accelerate convergence of evolutionary
algorithms. The main steps of evolutionary algorithms are
shown in Fig. 1. As seen, after population initialization,
algorithm remains inside a loop and continues to produce
new generations (by applying selection, crossover, and muta-
tion operations) and stops if termination criterion is satisfied.
Initialization and producing new generations are two stages
that can be extended by opposition-based concept. These two
schemes will be introduced in following subsections.

Fig. 1. Flowchart of evolutionary algorithms.

A. Opposition-Based Population Initialization

According to our review of optimization literature, random
number generation is, in absence of a priori knowledge, the
only choice to create initial population. But as mentioned in
section II, concept of opposition-based optimization can help
us to obtain fitter starting candidate solutions even when there
is no a priori knowledge about solutions. Many approaches
can be proposed to generate better initial population based
on opposition idea. One possible scheme is given in Fig. 2
and the corresponding algorithm is presented Table I. We
call this variation ODE1 as an opposition-based extension of
DE.

Fig. 2. Opposition-based population initialization for evolutionary algo-
rithms, ODE1.

B. Opposition-Based Generation Jumping

By applying a similar approach to the current population,
it can be forced to jump. Based on a jumping rate JR,
instead of generating new population by selection, crossover,
and mutation, the opposite population is calculated and the
n fittest individuals are selected from the current population
and the opposite population. Fig. 3 shows embedding
of opposition-based population initialization and also
generation jumping in the evolutionary algorithms. Table
II presents corresponding algorithm, ODE2, the second
variation of opposition-based DE. Our comprehensive
experiments show that JR should be a small number
(∈ (0, 0.4)).

Dynamic Opposition: It should be noted here that in order
to calculate the opposite population for generation jumping,
the opposite of each variable is calculated dynamically. The
maximum and minimum values of each variable in current
population ([ap

j , b
p
j]) are used to calculate opposite point

instead of using variables’ predefined interval boundaries
([aj , bj]):

OPk,j = ap
j + bp

j − Pk,j , (3)

k = 1, 2, ..., n; j = 1, 2, ..., Nv.

This dynamic behavior of the opposite point calculation
increases our chance to find fitter opposite points. By keeping
variables’ interval static boundaries, we will jump outside
of solution space and the knowledge of current reduced
space (converged population) is not utilized to find better
opposite candidate. For this reason, we calculate opposition
point by using variables’ current interval in the population
([ap

j , b
p
j]) which is smaller than the corresponding initial

range ([aj , bj]). In the following section, a short review of
differential evolution approach, which we use as a case study
to demonstrate embedding the opposition-based concept, is
presented.

2011

TABLE I

OPPOSITION-BASED POPULATION INITIALIZATION ALGORITHM, ODE1.

begin
n = population size;
k = {1, 2, ..., n}; /* index of individuals in the population */
j = {1, 2, ..., Nv}; /* index of variables in the individual */
xj ∈ [aj , bj]; /* interval boundaries of variable j */

Generating uniformly distributed random population; /* P (n) */
OPk,j = aj + bj − Pk,j ; /* calculating opposite population, OP (n) */
Selecting n fittest individuals from set the {P (n), OP (n)} as initial population; /* OPI(n) */

end

TABLE II

DE WITH EMBEDDED OPPOSITION-BASED POPULATION INITIALIZATION AND GENERATION JUMPING, ODE2.

begin
n = population size;
NFCMAX= maximum number of function calls;
VTR = value to reach;
JR = jumping rate;

Opposition-Based Population Initialization; /* see Table I */
Calculate Fitness Value for each Individual in the Population;

while (Best F itness V alue so far > VTR and NFC < NFCMAX)
if (rand (0,1) < JR)

/* Opposition-Based Jumping */
OPk,j = ap

j + bp
j − Pk,j ; /* calculating opposite population of Current Population, OP (n) */

Calculate Fitness Value for each Individual in OP (n);
Selecting n fittest individuals from {OP (n), Current Population} as Current Population;

else
/* DE evolution steps (mutation, crossover, and selection) */
Mutation;
Crossover;
Selection;

end if
Calculate Fitness Value for each Individual in the Current Population;

end while
end

IV. A BRIEF INTRODUCTION TO DIFFERENTIAL

EVOLUTION

Differential Evolution (DE) is a population-based,
efficient, robust, and direct search method [9]. Like other
evolutionary algorithms, it starts with an initial population
vector, which is randomly generated when no preliminary
solution is available. Let assume that Xi,G, (i = 1, 2, ..., n)
are n Nv-dimensional parameter vectors of generation G (n
is a constant number which presents the population size)
[10]. In order to generate a new population of vectors, for
each target vector in population three vectors are randomly

selected, and weighted difference of two of them is added
to the third one. For classical DE (DE/rand/1/bin), the
mutation, crossover, and selection have straightforward
procedures as follows [5], [10]:

Mutation - For each vector i from generation G a mutant
vector Vi,G is defined by

Vi,G = Xr1,G + F (Xr2,G −Xr3,G), (4)

where i = {1, 2, ..., n} and r1, r2, and r3 are mutually
different random integer indices selected from {1, 2, ..., n}.

2012

Fig. 3. Flowchart of embedding opposition-based population initialization
and generation jumping for evolutionary algorithms: rand(0,1) is an evalu-
ation of uniform random number (∈ (0, 1)) and JR is the jumping rate.

Further, i, r1, r2, and r3 are different so n ≥ 4. F is a
real constant (∈ [0, 2]) which determines amplification of
the added differential variation of (Xr2,G −Xr3,G). Larger
values for F result in higher diversity in the generated
population and the lower values in faster convergence.

Crossover - DE utilizes crossover operation to increase
diversity of the population. It defines following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UNvi,G), (5)

where j = 1, 2, .., Nv and

Uji,G =
{

Vji,G if randj(0, 1) ≤ Cr,
Xji,G otherwise.

(6)

Cr is predefined crossover constant ∈ (0, 1); randj(0, 1)
is jth evaluation of uniform random generator ∈ [0, 1].
Most popular value for Cr is in the range of (0.4, 1) [11].

Selection - The approach must decide which vector (Ui,G

or Xi,G) should be a member of new generation, G + 1.
Vector with the higher fitness value is chosen.

There are other variants of DE [5] but to maintain a general
comparison, the classical version of DE, DE/rand/1/bin
[5], [10], has been selected to be investigated in conducted
experiments.

V. EXPERIMENTAL VERIFICATION

The conducted experiments are categorized in three
groups in order to investigate the performance of

• Opposition-based initialization in general.
• DE with opposition-based initialization, ODE1 (see

Table I).
• DE with embedded opposition-based initialization and

generation jumping, ODE2 (see Table II).

All experiments here have been repeated 100 times for
each benchmark function to obtain statistically reliable per-
formance numbers.

A. First Experimental Series

In this section, the possibility of starting with better
initial population (population with lower average fitness
value for minimization problems) is investigated. For each
benchmark function (F1 to F7, see Appendix A) the random
and opposition-based initial populations are generated and
the average fitness value f̄ of population is calculated. The
results are summarized in Table III (population size: 100,
benchmark functions’ dimension: 10).

Last column of the Table III shows the achieved average
fitness value improvement, f̄Imp, when the opposition-based
approach (Table I) has been applied to generate initial
population.

Now, one question arises: Can the average fitness value
improvement still be achieved if dimensionality increases?
In order to answer this question, experiments were repeated
for higher dimensions 30, 60, 90, 150, and 300. The results
are given in Fig. 4. As seen, by increasing the dimensionality
the average fitness value improvement decreases, except for
F3.

Fig. 4. Average fitness value improvement (f̄Imp) vs. dimension (D).

However, even for much higher dimensions, 300, im-
provement is still recognizable. Table IV presents these
improvements, ranging form 4% to 70%. Function F7 is
absent in this experiment because it is a one-dimensional
function.

2013

Administrator
Highlight

TABLE III

RANDOM AND OPPOSITION-BASED POPULATION INITIALIZATIONS.

f̄ : AVERAGE FITNESS VALUE OF POPULATION, σ: STANDARD DEVIATION, f̄Imp : AVERAGE FITNESS VALUE IMPROVEMENT. EXPERIMENTS HAVE

BEEN REPEATED 100 TIMES TO CALCULATE AVERAGE VALUES.

Random Initialization Opposition-Based Initialization
Function f̄ σ f̄ σ f̄Imp

F1 8.7465e + 005 2.4543e + 005 6.7861e + 005 1.3419e + 005 +22%
F2 4.7800e + 006 1.5255e + 006 3.5576e + 006 8.0131e + 005 +26%
F3 7.6707e + 004 8.2063e + 004 2.3847e + 004 1.1196e + 004 +69%
F4 4.0464e + 003 2.0179e + 003 2.4895e + 003 825.7059 +34%
F5 299.6832 85.0089 231.7410 46.8247 +23%
F6 1.5915 0.7595 0.9886 0.3579 +38%
F7 1.1812e + 005 2.0401e + 005 1.1108e + 003 1.9694e + 003 +99%

TABLE IV

AVERAGE FITNESS VALUE IMPROVEMENT FOR N = 300. FUNCTION F7

IS ABSENT IN THIS EXPERIMENT BECAUSE IT IS A ONE-DIMENSIONAL

FUNCTION.

Function f̄Imp

F1 +4%
F2 +5%
F3 +70%
F4 +7%
F5 +4%
F6 +24%

The experiments were repeated with increased variable
ranges. The results for almost all cases remained unchanged,
with less than ±2% variation even for 100 times increase in
range of variables.

Result Analysis - The conducted experiments in this
section showed that by opposition-based population initial-
ization, we can obtain an initial population which has lower
average fitness value (for minimization problems) compared
to random population. Increase in dimensionality or size of
search space resulted in a drop of performance, however, the
advantage of opposition-based initialization was still visible.

Next experiment series will show how this average fitness
value improvement can make the convergence faster in an
evolutionary algorithm such as DE.

B. Second Experimental Series

In this section, performance of Deferential Evolution
(DE), with random population initialization, and DE with
opposition-based population initialization (ODE1) are
compared using a nine-function test suite (two harder to
optimize functions, namely, Ackley’s Path and Rastrigin are
added to the previous test set. See Appendix A). For these
experiments, like other works in this field [12], [13], the
average number of function calls (NFC) and success rate
(SR) have been used as performance measures. For these
experiments and also for the next series the parameters are

set as follows:

• Population size, Np = 100
• Differential amplification factor, F= 0.5
• Crossover probability constant, Cr= 0.9
• Jumping rate constant, JR= 0.3 (applied to second

experimental series)
• Strategy [5]: DE/rand/1/bin (classical version of DE)
• Value to reach, VTR= 0.1 (except for F7 which is 10−7)
• Maximum function calls, MAXNFC=5×105 (106 for F9)
• Termination criterion: Distance between the best value

found by algorithm and theoretical optimum should
be less than 1% of the theoretical optimum value OR
number of functions call pass MAXNFC.

The results are shown in Table V. As seen, function
calls improvement (NFCImp) is between 0% and 96%; the
overall improvement for eight functions is 3.50% (96%
improvement for F6 is excluded because improvement was
exceptionally high). No improvement is achieved for F4,
Rosenbrock’s valley function. For this function convergence
to global optimum is difficult because it is located inside
a long, narrow, parabolic shaped, flat valley and opposite
points can’t help to improve convergence rate. Success rate
for all cases is 100%. It means both algorithms could solve
problems in all 100 runs.

Result Analysis - Results of this section showed that
the opposition-based population initialization speeds up con-
vergence. By applying opposition-based optimization at the
initialization level, the classical DE has been made faster
for our test set. In most optimization problems, which are
solved by evolutionary algorithms, we can observe that the
initial steps towards solution occur very fast. Most of the
time is then spent to improve candidate results. As seen,
even starting with better initial candidate solutions could
not reduce the number of function calls so much. There
are many optimization problems which each function call
is time consuming, sometimes several hours (e.g. returning
a simulation results as a fitness value) [10]. For these cases,

2014

TABLE V

COMPARISON OF CLASSICAL DEFERENTIAL EVOLUTION WITH RANDOM POPULATION INITIALIZATION (DE) AND DE WITH OPPOSITION-BASED

POPULATION INITIALIZATION (ODE1). D: DIMENSION, NFC: AVERAGE NUMBER OF FUNCTION CALLS, NFCIMP : NUMBER OF FUNCTION CALLS

IMPROVEMENT (ROUNDED). EXPERIMENTS HAVE BEEN REPEATED 100 TIMES TO CALCULATE AVERAGE VALUES.

Function D NFC (DE) NFC (ODE1) NFCImp

F1 60 113957 110928 +3%
F2 20 45553 44872 +1%
F3 20 77997 75617 +3%
F4 40 510490 510705 +0%
F5 20 47553 42370 +11%
F6 60 72974 2904 +96%
F7 1 2522 2407 +5%
F8 30 51666 50550 +2%
F9 20 635919 615250 +3%

Overall improvement of NFC for nine functions: 3.50%
(F6 is excluded because improvement for that is exceptionally high.)

even small improvement in number of function calls can be
worthwhile.

C. Third Experimental Series

This experimental series investigate the effects of
applying opposition-based initialization and generation
jumping simultaneously (ODE2, Table II). All DE settings
and performance measures are the same as in previous
experiment series (JR=0.3). The results are summarized
in Table VI. As shown, overall improvement of 40% for
average number of function calls is achieved for 9 benchmark
functions. Success rate for all cases is 100% except F9
(ODE2) which was 96%. Figure 5 shows performance
comparisons between classical DE and ODE2 (because of
space limitation just some samples are presented).

Result Analysis - By combining opposition-based initial-
ization and generation jumping, an improvement of 40% is
achieved. Again except for F4, for all benchmark functions
the improvement is obtained.

VI. CONCLUDING REMARKS

In this paper, new schemes for evolutionary algorithms
were proposed. First, the concept of opposition-based op-
timization was introduced and then it was employed to
speed up convergence of evolutionary algorithms. Deferential
Evolution was chosen as a sample evolutionary algorithm
to implement proposed schemes. The idea of opposition-
based optimization was used for population initialization
and generation jumping in our experiments (ODE1, ODE2).
The results demonstrated that the proposed schemes can
accelerate convergence of DE algorithms.

Although the classical Deferential Evolutionary algorithm
was used in all conducted experiments in this paper, the main
idea is quite general and can be applied to other evolutionary
algorithms such as Genetic algorithms.

VII. FUTURE WORKS

The proposed schemes have a high potential to improve
performance of optimization methods and can be embedded
in various steps of evolutionary algorithms. This work
presents preliminary results along this path and demonstrates
usefulness of the opposition-based optimization. Working on
other possible schemes of the proposed idea, for instance,
making smarter jumping, applying to other optimization
methods, and also utilizing a more comprehensive test set
are our directions for future works.

APPENDIX A. LIST OF BENCHMARK FUNCTIONS

All following functions are well-known benchmark
functions which have been frequently used in literature [10],
[14]. All of these functions are minimization problems.

• F1: 1st De Jong function

f(x) =
D∑

i=1

xi
2, −512 ≤ xi ≤ 512

Global minimum: xi = 0, f(xi) = 0.
Characteristics: Continuous, convex, unimodal.

• F2: Axis parallel hyper-ellipsoid

f(x) =
D∑

i=1

ixi
2, −512 ≤ xi ≤ 512

Global minimum: xi = 0, f(xi) = 0.
Characteristics: Continuous, convex, unimodal.

• F3: Rotated hyper-ellipsoid function

f(x) =
D∑

i=1

(
i∑

j=1

xj)2, −65 ≤ xi ≤ 65

2015

TABLE VI

CONVERGENCE COMPARISON OF DE AND ODE2 (OPPOSITION-BASED INITIALIZATION AND GENERATION JUMPING). EXPERIMENTS HAVE BEEN

REPEATED 100 TIMES TO CALCULATE AVERAGE VALUES.

Function D NFC (DE) NFC (ODE2) NFCImp

F1 30 27938 13062 +53%
F2 30 37528 18224 +51%
F3 20 77502 73122 +6%
F4 10 296260 366990 −24%
F5 30 53610 31242 +42%
F6 30 6122 872 +86%
F7 1 2910 2134 +27%
F8 30 52556 28528 +46%
F9 10 327782 92060 +72%

Overall improvement of NFC for nine benchmark functions: 40%

(a) F1, 53% faster (b) F2, 51% faster

(c) F5, 42% faster (d) F6, 86% faster

(e) F8, 46% faster (f) F9, 72% faster

Fig. 5. Performance comparison between classical DE and ODE2. Progress toward optimum value (minimization, f(x) = 0). Experiments have been
repeated 100 times to plot by average values.

2016

Global minimum: xi = 0, f(xi) = 0.
Characteristics: Continuous, convex, unimodal.

• F4: Rosenbrock’s valley

f(x) =
D−1∑
i=1

[100(xi+1 − x2
i)

2 + (1− xi)2], −2 ≤ xi ≤ 2

Global minimum: xi = 1, f(xi) = 0.
Characteristics: Convergence to global optimum is

difficult because it is inside a long, narrow, parabolic shaped
flat valley.

• F5: Griewangk function

f(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos(
xi√

i
) + 1, −600 ≤ xi ≤ 600

Global minimum: xi = 0, f(xi) = 0.
Characteristics: Many regularly distributed local minima.

• F6: Sum of different power

f(x) =
D∑

i=1

|xi|(i+1), −1 ≤ xi ≤ 1

Global minimum: xi = 0, f(xi) = 0.
Characteristics: Continuous, convex, unimodal.

• F7: One dimensional multimodal function

f(x) = x6 − 15x4 + 27x2 + 243, −10 ≤ xi ≤ 10

Global minimums: xi = +3/− 3, f(xi) = 0.
Characteristics: Continuous, multimodal.

• F8: Ackley’s Path

f(x) = −20e−0.2

√
D∑

i=1
x2

i

D − e

D∑
i=1

cos(2πxi)

D + 20 + e,

−30 ≤ xi ≤ 30

Global minimum: xi = 0, f(xi) = 0.
Characteristics: Quite narrow attraction basin of the

global minimum, multimodal.

• F9: Rastrigin function

f(x) = 10D +
D∑

i=1

(x2
i − 10 cos(2πxi)), −5.12 ≤ xi ≤ 5.12

Global minimum: xi = 0, f(xi) = 0.
Characteristics: Highly multimodal, regularly distributed

local minima.

REFERENCES

[1] Thomas Back, Evolutionary Algorithms in Theory and Practice
: Evolution Strategies, Evolutionary Programming, Genetic
Algorithms, Oxford University Press, USA, 1996, ISBN:
0195099710.

[2] A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
(Natural Computing Series), Springer; 1st Edition, 2003, ISBN:
3540401849.

[3] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, New York: Addison-Wesley, 1989.

[4] K. Price, R. M. Storn, J. A. Lampinen, Differential Evolution :
A Practical Approach to Global Optimization (Natural Computing
Series) Springer; 1st Edition, 2005, ISBN: 3540209506.

[5] R. Storn and K. Price, Differential Evolution- A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces, Journal
of Global OPtimization 11, pp. 341-359, 1997.

[6] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for
Machine Intelligence, Int. Conf. on Computational Intelligence for
Modelling Control and Automation - CIMCA’2005, Vol. I, pp.
695-701, Vienna, Austria, 2005.

[7] H.R. Tizhoosh, Reinforcement Learning Based on Actions and
Opposite Actions. ICGST International Conference on Artificial
Intelligence and Machine Learning (AIML-05), Cairo, Egypt, 2005.

[8] H.R. Tizhoosh, Opposition-Based Reinforcement Learning, Journal
of Advanced Computational Intelligence and Intelligent Informatics,
Vol. 10, No. 3, 2006.

[9] K. Price, An Introduction to Differential Evolution, In: D. Corne, M.
Dorigo, F. Glover (eds) New Ideas in Optimization, NcGraw-Hill,
London (UK), pp. 79-108, 1999, ISBN:007-709506-5.

[10] Godfrey C. Onwubolu and B.V. Babu, New Optimization Techniques
in Engineering, Berlin ; New York : Springer, 2004.

[11] S. Das, A. Konar, U. Chakraborty, Improved Differential Evolution
Algorithms for Handling Noisy Optimization Problems, IEEE
Congress on Evolutionary Computation Proceedings, Vol.2, pp.
1691-1698, 2005.

[12] J. Andre, P. Siarry, T. Dognon, An Improvement of the Standard
Genetic Algorithm Fighting Premature Convergence in Continuous
Optimization, Advance in Engineering Software 32, pp. 49-60, 2001.

[13] Ondřej Hrstka and Anna Kučerová, Improvement of Real Coded
Genetic ALgorithm Based on Differential Operators Preventing
Premature Convergence, Advance in Engineering Software 35, pp.
237-246, 2004.

[14] J. Vesterstrøm and R. Thomsen, A Comparative Study of Differential
Evolution, Particle Swarm Optimization, and Evolutionary
Algorithms on Numerical Benchmark Problems. Proceedings
of the Congress on Evolutionary Computation (CEC’04), IEEE
Publications, Vol. 2, pp. 1980-1987, 2004.

2017

